A feasibility study of the Dynamic Phantom scanner for quality assurance of beam profiles at various gantry angles

نویسندگان

  • Yunkai Zhang
  • Wen C. Hsi
  • James C.H. Chu
  • Damian B. Bernard
  • Ross A. Abrams
چکیده

The effect of gantry rotation on beam profiles of photon and electron beams is an important issue in quality assurance for radiotherapy. To address variations in the profiles of photon and electron beams at different gantry angles, a Dynamic Phantom scanner composed of a 20 x 12 x 6 cm3 scanning Lucite block was designed as a cross-beam-profile scanner. To our knowledge, differences between scanned profiles acquired at different gantry angles with a small size Lucite block and those acquired a full-size (60 x 60 x 50 cm3) water phantom have not been previously investigated. We therefore performed a feasibility study for a first prototype Dynamic Phantom scanner without a gantry attachment mount. Radiation beams from a Varian LINAC 21EX and 2100C were used. Photon beams (6 MV and 18 MV) were shaped by either collimator jaws or a Varian 120 Multileaf (MLC) collimator, and electron beams (6 MeV, 12 MeV, and 20 MeV) were shaped by a treatment cone. To investigate the effect on profiles by using a Lucite block, a quantitative comparison of scanned profiles with the Dynamic Phantom and a full-size water phantom was first performed at a 0 degrees gantry angle for both photon and electron beams. For photon beam profiles defined by jaws at 1.0 cm and 5.0 cm depths of Lucite (i.e., at 1.1 cm and 5.7 cm depth of water), a good agreement (less than 1% variation) inside the field edge was observed between profiles scanned with the Dynamic Phantom and with a water phantom. The use of Lucite in the Dynamic Phantom resulted in reduced penumbra width (about 0.5 mm out of 5 mm to 8mm) and reduced (1% to 2%) scatter dose beyond the field edges for both 6 MV and 18 MV beams, compared with the water phantom scanner. For profiles of the MLC-shaped 6 MV photon beam, a similar agreement was observed. For profiles of electron beams scanned at 2.9 cm depth of Lucite (i.e., at 3.3 cm depth of water), larger disagreements in profiles (3% to 4%) and penumbra width (3 mm to 4 mm out of 12 mm) were observed. Additional profiles with the gantry at 90 degrees and 270 degrees were performed for both MLC- and jaw-shaped photon beams and electron beams to evaluate the effect of gantry rotation. General good agreement is seen (less than 1 % variation) at all field sizes for collimator-shaped 6 MV and 18 MV photon beams. Similar variations observed for MLC-shaped photon beams indicate that the uncertainty in MLC position is similar to that for the collimator jaws. We conclude that the Dynamic Phantom scanner is a useful device for the routine quality assurance on beam profiles of photon beams and for constancy check on electron beams at various gantry angles. Caution should be taken when using this device to acquire basic electron dosimetry data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dosimetric Effect Resulting From the Collimator Angle, the Isocenter Move, and the Gantry Angle Errors

Introduction: Dose distribution can be affected by diverse parameters, such as beam orientations, and collimator angles. These parameters should respect and maintain the international recommended levels during the realization of the quality assurance protocols of linear accelerators. This study aimed at evaluating the dosimetric effects on treatment quality considering...

متن کامل

Evaluation of the Portal Imaging System Performance for an Elekta Precise Linac in Radiotherapy

Introduction: Electronic portal imaging devices (EPIDs) provide two- and three-dimensional planar and volumetric cone beam images to improve the accuracy of radiation treatment delivery. Periodic quality assurance (QA) of EPIDs is essential for dosimetric verification in radiotherapy. In this study, a QA program was implemented to evaluate the function of the EPID to be confident in applying co...

متن کامل

Hospital Based Superconducting Cyclotron for Neutron Therapy: Medical Physics Perspective

The neutron therapy facility at the Gershenson Radiation Oncology Center, Harper University Hospital in Detroit has been operational since September 1991. The d(48.5)+Be beam is produced in a gantry mounted superconducting cyclotron designed and built at the National Superconducting Cyclotron Laboratory (NSCL). Measurements were performed in order to obtain the physical characteristics of the n...

متن کامل

An Update of Couch Effect on the Attenuation of Megavoltage Radiotherapy Beam and the Variation of Absorbed Dose in the Build-up Region

Purpose: Fiber carbon is the most common material used in treating couch as it causes less beam attenuation than other materials. Beam attenuation replaces build-up region, reduces skin-sparing effect and causes target volume under dosage. In this study, we aimed to evaluate beam attenuation and variation of build-up region in 550 TxT radiotherapy couch.Materials and Methods: In this study, we ...

متن کامل

A study on slab-wooden dust-slab phantom for the development of thorax phantom

Introduction: The determination of accurate dose distribution is an issue of fundamental importance in radiotherapy, especially with regard to the fact that the human body is a heterogeneous medium. Therefore, the present study aimed to analyze the density and isodose depth profiles of 6 MV beam in a SP34 slab-wooden dust (pine)-SP34 slab (SWS) heterogeneous phantom.  Materials and Methods: Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2005